Isolation of (+)-Catechin from Food Waste Using Ionic Liquids-Modified ZIF67 Covered Silica

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background: Food waste contains abundant (+)-catechin, but its efficient recovery remains challenging. This study aimed to prepare ionic liquid (IL)-modified sorbents and establish an efficient method for (+)-catechin recovery from chocolate waste via solid-phase extraction (SPE); Methods: Three serious of IL-modified sorbents (Sil-IL, ZIF67-IL, Sil@ZIF67-IL) were synthesized. Their adsorption performance was evaluated under different conditions; adsorption isotherms and kinetics were fitted to Langmuir/Freundlich and pseudo-first/second-order models, respectively. Sorbent stability and (+)-catechin recovery from chocolate waste extracts were tested; Results: Sil@ZIF67-Hmim showed the highest adsorption capacity (154.4 mg/g) at 25 °C within 120 min. Adsorption followed the Langmuir model (R²=0.99), indicating chemical adsorption. Sil@ZIF67-Hmim was subjected to repeated solid phase extraction (SPE) for five consecutive days, the recovery rate ranged from 98.1%-99.2%, and the relative standard deviation (RSD) was 3.2%-4.4%; Conclusion: Sil@ZIF67-Hmim is a high-efficiency sorbent for (+)-catechin recovery from chocolate waste, providing a novel approach for food waste valorization and highlighting the application potential of IL-modified MOF-silica composites.

Article activity feed