Evolutionary Integration and Glucocorticoid Regulation of the Respiratory System: Structure, Function, and Homeostatic Adaptation.

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The vertebrate respiratory system arose under evolutionary pressures that linked increasing atmospheric oxygen levels to the metabolic demands of mitochondria. This transition—from ancestral gill-based exchange to the highly alveolated mammalian lung—was accompanied by the emergence of a hormonal regulatory axis centered on the glucocorticoid receptor alpha (GRα). Over time, GRα became deeply integrated into the architecture and function of the respiratory system, aligning pulmonary performance with organismal homeostasis across different developmental stages, environmental challenges, and disease states. This review combines evolutionary, embryological, and molecular evidence to explain how GRα shapes respiratory structure and function. We trace the evolution from ancient oxygen-sensing systems to mammalian alveoli and endothelial adaptations, demonstrating how conserved developmental pathways (including WNT, FGF, BMP, and SHH) are repurposed during both organogenesis and repair. Genetic models show that GRα is essential for preparing the lung for postnatal life, coordinating the reciprocal signaling between mesenchyme and epithelium that drives branching, septation, extracellular matrix organization, and the development of functional alveolar units. In the mature lung, GRα maintains the stability of the alveolar–capillary interface and coordinates immune, vascular, and metabolic functions to support efficient gas exchange. Its actions also extend to red blood cell biology and the regulation of stress erythropoiesis, linking pulmonary oxygen management with systemic oxygen delivery. Mechanistically, GRα interacts with circadian and hypoxia pathways and activates mitochondrial programs that enhance energy production and redox homeostasis during stress. By integrating these regulatory layers across developmental and physiological contexts, this review reframes GRα not simply as a stress-response receptor but as a non-redundant systems-level integrator of respiratory homeostasis. Understanding this layered control not only explains the benefits of antenatal corticosteroids but also highlights the therapeutic value of phase-specific, precision modulation of the GC–GRα axis—along with strategies that support GC–GR signaling—to reestablish and maintain homeostasis in acute and chronic pulmonary disorders.

Article activity feed