Robustness Enhancement of Self-Localization for Drone-View Mixed Reality via Adaptive RGB-Thermal Integration

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Drone-view mixed reality (MR) in the Architecture, Engineering, and Construction (AEC) sector faces significant self-localization challenges in low-texture environments, such as bare concrete sites. This study proposes an adaptive sensor fusion framework integrating thermal and visible light (RGB) imagery to enhance tracking robustness for diverse site applications. We introduce the Effective Inlier Count (Neff) as a lightweight gating mechanism to evaluate the spatial quality of feature points and dynamically weight sensor modalities in real-time. By employing a 20 ×16 grid-based spatial filtering algorithm, the system effectively suppresses the influence of geometric burstiness without significant computational overhead on server-side processing. Validation experiments across various real-world scenarios demonstrate that the proposed method maintains high geometric registration accuracy where traditional RGB-only methods fail. In texture-less and specular conditions, the system consistently maintained an average Intersection over Union (IoU) above 0.72, while the baseline suffered from complete tracking loss or significant drift. These results confirm that thermal-RGB integration ensures operational availability and improves long-term stability by mitigating modality-specific noise. This approach offers a reliable solution for various drone-based AEC tasks, particularly in GPS-denied or adverse environments.

Article activity feed