Selenium-Mediated Rhizosphere Blocking and Control Network: Multidimensional Mechanisms for Regulating Heavy Metal Bioavailability

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Soil heavy metal (HM) pollution poses a severe threat to ecological security and human health. Selenium (Se) is an essential trace element for the human body and can regulate crop growth and development as well as HM uptake in HM-contaminated soils. The regulatory mechanisms of Se on HMs are mainly reflected in four aspects: Geochemical immobilization promotes the formation of metal selenide precipitates and the adsorption of HMs by soil colloids by regulating the rhizosphere redox potential (Eh) and pH value. Rhizosphere microbial remodeling drives the enrichment of functional microorganisms such as Se redox bacteria, plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) through the dual selective pressure of Se toxicity and root exudates, so as to synergistically realize Se speciation transformation and HM adsorption/chelation. Root barrier reinforcement constructs physical and chemical dual defense barriers by inducing the formation of iron plaques on the root surface, remodeling root morphology and strengthening cell wall components such as lignin and polysaccharides. Intracellular transport regulation down-regulates the genes encoding HM uptake transporters, up-regulates the genes encoding HM efflux proteins, and promotes the synthesis of phytochelatins (PCs) to form HM complexes and finally realizes vacuolar sequestration. Finally, we summarize current research gaps in the interaction mechanisms of different Se species, precise application strategies, and long-term environmental risk assessment, providing a theoretical basis and technical outlook for the green remediation of HM-contaminated farmlands and Se biofortification of crops.

Article activity feed