RES-YOLO: A Real-Time Infrared Detection Framework for Intelligent Vehicle Traffic Monitoring

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Infrared traffic object detection faces challenges such as low resolution, weak thermal 2 contrast, and inefficiency in detecting small objects. To address these issues, this paper 3 proposes RES-YOLO, an enhanced YOLOv8n-based architecture. It incorporates Receptive 4 Field Adaptive Convolution for improved multi-scale perception, Efficient Multi-scale 5 Attention for better feature representation, and the Scylla-IoU loss for more accurate 6 and faster bounding box regression. Additionally, a pseudo-color infrared dataset is 7 constructed to enrich texture and contrast information beyond conventional white-hot 8 images. Experiments on both the FLIR public dataset and a self-built dataset show RES- 9 YOLO improves accuracy by 4.9% and 5.5% over the baseline while maintaining real-time 10 performance. These results highlight the method’s effectiveness in integrating lightweight 11 deep learning and dataset enhancement for robust perception in intelligent vehicle systems, 12 supporting AI-driven autonomous driving and driver assistance applications.

Article activity feed