Comparing Neural Architectures for English-Spanish Machine Translation: From LSTM to Transformer

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This paper presents a systematic comparison of neural architectures for English-to-Spanish machine translation. We implement and evaluate five model configurations ranging from vanilla LSTM encoder-decoders to Transformer models with pretrained embeddings. Using the OPUS-100 corpus (1M training pairs) and FLORES+ benchmark (2,009 test pairs), we evaluate translation quality using BLEU, chrF, and COMET metrics. Our best Transformer model achieves a BLEU score of 20.26, closing approximately 65% of the performance gap between our strongest LSTM baseline (BLEU 10.66) and the state-of-the-art Helsinki-NLP model (BLEU 26.60). We analyze the impact of architectural choices, data scale, and pretrained embeddings on translation quality, providing insights into the trade-offs between model complexity and performance.

Article activity feed