New Mechanism for the Enhancement of the Oxygen Reduction Reaction on Stepped Platinum Surfaces
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
It has long been recognized that the oxygen reduction reaction occurs more readily on Pt(111) surfaces that include steps, both (111) and (100), than on near-perfect Pt(111). Theoretical models were developed involving the water structure in the electric double layer and its interactions with adsorbed OH, with the actual O2 reduction occurring on the (111) terraces adjacent to the steps. However, the present density functional theory (DFT) calculations confirms that O2 adsorbs strongly at the steps and can undergo dissociation aided by adjacent water molecules to produce adsorbed OH. OH produced at the steps can move to the (111) terraces, where it can be more readily reduced to H2O and desorbed. This model avoids the scaling relation, which predicts that all oxygen-containing reactants and intermediates are proportional to each other on any given surface. Efforts to develop new O2 reduction catalysts have been hampered by this assumption, which supposes that the reaction rate can be increased by decreasing OH adsorption strength, even though decreased OH adsorption strength is accompanied by decreased O2 adsorption strength. This proposed model can explain the experimental results on stepped surfaces and may also be important for the development of Pt nanoparticle catalysts.