Diagnosing Engine Wear: How Stored Marine Diesel Degradation Impacts Lubrication and Friction

Read the full article

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study investigated the degradation and contamination behavior of 41 real-world operational Marine Diesel Fuel samples, conforming to ELOT ISO 8217:2024 (DFA category). Samples were sourced directly from land-based supply tanks. To assess fuel degradation, a comprehensive suite of parameters was evaluated, including fuel characteristics such as viscosity and density. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) was employed for elemental analysis to determine the content of wear and other metallic contaminants. Elevated concentrations of various metals were detected, suggesting potential leaching from system components within the storage infrastructure. Notable elemental concentrations included Iron (Fe up to 1.38 mg/kg), Copper (Cu up to 0.401 mg/kg), Lead (Pb up to 0.358 mg/kg), Aluminum (Al up to 0.218 mg/kg), Zinc (Zn up to 1.331 mg/kg), Nickel (Ni up to 0.172 mg/kg), Calcium (Ca up to 8.054 mg/kg), Sodium (Na up to 0.332 mg/kg), Phosphorous (P up to 0.602 mg/kg), and Silicon (Si up to 8.249 mg/kg). The presence of these contaminants in marine fuels, if bunkered, poses a significant risk of impaired engine performance, including injector fouling and ash formation. Critically, this study suggests that FAME content is not the primary driver of the observed oxidation and subsequent metallic degradation.

Article activity feed