Solar-Driven Green Hydrogen in Iran: Techno-Economic Analysis and Deployment Roadmap

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Hydrogen is a versatile energy carrier essential for decarbonizing hard-to-abate sectors and long-duration storage. This study presents a unified techno-economic comparison of major production pathways—grey/blue steam methane reforming, biomass gasification, thermochemical cycles, biological methods, and solar-powered electrolysis—using 2025 benchmarks. Focus is on a 100 kW off-grid PV-electrolyzer system with realistic assumptions (PV performance ratio 0.85, electrolyzer efficiency 70% LHV). In Iran's high-insolation regions (PSH ≥ 5.15 kWh/kWp/day), annual yields reach 3.2–3.4 tonnes H₂—55–60% higher than northern Europe—with round-trip efficiency of 23.8%. Solar electrolysis offers zero direct emissions and 51–55 kWh/kg H₂ consumption. Scaling to multi-MW coastal hybrids with renewable desalination projects LCOH of 3.0–4.0 USD/kg by 2030, positioning Iran as a competitive exporter. A reproducible model and phased roadmap provide actionable insights.

Article activity feed