Clean-Splat: Context-Aware Real-Time Object Removal in Augmented Reality via Generative 3D Gaussian Inpainting

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Diminished Reality (DR)—the ability to visually remove real-world objects from a live Augmented Reality (AR) feed—is essential for reducing cognitive load and decluttering workspaces. However, existing techniques face a critical challenge: removing an object creates a visual void ("hole") that must be filled with a plausible background. Traditional 2D inpainting methods lack temporal consistency, causing the background to flicker or slide as the user moves. In this paper, we propose Clean-Splat, a novel framework for real-time, multi-view consistent object removal. We leverage 3D Gaussian Splatting (3DGS) for scene representation and integrate a View-Consistent Diffusion Prior to hallucinate occluded background geometry and texture. Unlike previous NeRF-based inpainting which is prohibitively slow, our method updates the 3D scene representation in near real-time, enabling rendering at >30 FPS on consumer hardware. Extensive experiments on real-world cluttered scenes demonstrate that Clean-Splat achieves state-of-the-art perceptual quality (LPIPS) and temporal stability compared to existing video inpainting approaches.

Article activity feed