Selective Capture and Continuous Recovery of Sulfur-Containing Molecules from Flowing Wastewater Using a Capillary Ag<sub>2</sub>Mo<sub>3</sub>O<sub>10</sub>·1.8H<sub>2</sub>O/Carbon Fiber Membrane System

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study presents a novel membrane-inspired Ag₂Mo₃O₁₀·1.8H₂O/carbon fiber cloth (CFC) hybrid framework designed for the continuous and selective recovery of high-value sulfur-containing molecules from organic wastewater. The framework was fabricated by uniformly growing Ag₂Mo₃O₁₀·1.8H₂O nanowires on CFC membrane, forming a hierarchical porous network with abundant micro-nano channels that facilitate efficient, capillary-driven water transport. Owing to its mesoporous structure and specific Ag-S coordination affinity, the material exhibits excellent selectivity for sulfur-containing dyes, achieving rapid adsorption (&gt;94% removal of methylene blue within 10 minutes) and high specificity in mixed solutions. Moreover, the hybrid framework demonstrates outstanding reusability, retaining high recovery efficiency over multiple cycles. A continuous-flow system based on this framework operates without external pressure and achieves a water transport rate of 1875 mL·h-1·m-2. These results underscore the potential of the Ag₂Mo₃O₁₀·1.8H₂O/CFC system as an efficient, scalable, and sustainable platform for industrial wastewater resource recovery.

Article activity feed