CEMG: Collaborative-Enhanced Multimodal Generative Recommendation
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Generative recommendation models often struggle with two key challenges: (1) the superficial integration of collaborative signals, and (2) the decoupled fusion of multimodal features. These limitations hinder the creation of a truly holistic item representation. To overcome this, we propose CEMG, a novel Collaborative-Enhanced Multimodal Generative Recommendation framework. Our approach features a Multimodal Fusion Layer that dynamically integrates visual and textual features under the guidance of collaborative signals. Subsequently, a Unified Modality Tokenization stage employs a Residual Quantization VAE (RQ-VAE) to convert this fused representation into discrete semantic codes. Finally, in the End-to-End Generative Recommendation stage, a large language model is fine-tuned to autoregressively generate these item codes. Extensive experiments demonstrate that CEMG significantly outperforms state-of-the-art baselines.