<p class="papertitle" style="margin-bottom: 12.0pt; text-align: left; mso-line-height-alt: 14.0pt; layout-grid-mode: char; mso-layout-grid-align: none;" align="left">Adaptive Anomaly Detection for Non-Stationary Time-Series: A Continual Learning Framework with Dynamic Distribution Monitoring

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Non-stationary time-series data poses significant challenges for anomaly detection systems due to evolving patterns and distribution shifts that render traditional static models ineffective. This paper presents a novel continual learning framework that integrates dynamic distribution monitoring mechanisms to enable adaptive anomaly detection in non-stationary environments. The proposed framework employs a dual-module architecture consisting of a distribution drift detector and an adaptive learning component. The distribution drift detector utilizes statistical hypothesis testing to identify temporal shifts in data distributions, while the adaptive learning module employs rehearsal-based continual learning strategies with dynamic memory management to maintain model performance across evolving patterns. We introduce a hybrid loss function that balances stability and plasticity, preventing catastrophic forgetting while enabling rapid adaptation to new distributions. Experimental results demonstrate an average F1-score improvement of 11.3% over the best-performing baseline, highlighting the robustness and adaptability of the proposed framework under non-stationary conditions while maintaining computational efficiency suitable for real-time applications.

Article activity feed