Integrating Agentic AI to Automate ICD-10 Medical Coding

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Automating ICD-10 coding from discharge summaries remains demanding because coders analyze clinical narratives while justifying decisions. This study compares three automation patterns: PLM-ICD as a standalone deep learning system emitting 15 codes per case, LLM-only generation with full autonomy, and a hybrid approach where PLM-ICD drafts candidates for an agentic LLM filter to accept or reject. All strategies were evaluated on 19,801 MIMIC-IV summaries using four LLMs spanning compact (Qwen2.5-3B, Llama-3.2-3B, Phi-4-mini) through large scale (Sonnet-4.5). Precision guided evaluation because coders still supply any missing diagnoses. PLM-ICD alone reached 55.8% precision while always surfacing 15 suggestions. LLM-only generation lagged severely (1.5--34.6% precision) and produced inconsistent output sizes. The agentic filter delivered the best trade-off: compact LLMs reviewed the 15 candidates, discarded weak evidence, and returned 2--8 high-confidence codes. Llama-3.2-3B, for example, improved from 1.5% as a generator to 55.1% as a verifier while trimming false positives by 73%. These results show that positioning LLMs as quality controllers, rather than primary generators, yields reliable support for clinical coding teams, while formal recall/F1 reporting remains future work for fully autonomous implementations.

Article activity feed