Impact of the Surface Chemical Composition on the ORR Activity of Metal-Free Carbon-Based Electrodes and Their Performance in DMFC

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Nine activated carbons (ACs) with hierarchical micro- and mesoporous textural structures and varied chemical compositions were evaluated as metal-free electrocatalysts for the Oxygen Reduction Reaction (ORR) under alkaline conditions. The base material was a commercial biomass-based carbon chemically activated with H3PO4, which possesses a hierarchical micro- and mesoporous structure. This material was modified by: oxidative treatment with HNO3 to increase the content of acidic oxygenated functional groups (OFGs); and by heat treatment in an inert atmosphere up to 800 °C to remove most of the acidic OFGs. Furthermore, the original and modified ACs were subjected to ammonization up to 400 or 800 °C to incorporate nitrogen. The results showed that there exists a synergistic effect among at least three critical factors that enhance the ORR performance of the materials: a high specific surface area (SSA); a high electrical conductivity (achieved by means of a well-developed carbon basal plane structure); and the presence of functional groups containing heteroatoms, mainly aromatic nitrogens. Notably, the ACs exhibited high tolerance to methanol crossover. Finally, as a proof-of-concept, a selected AC was tested in a single-cell Direct Methanol Fuel Cell (DMFC), yielding excellent performance. The results demonstrate the high potential of N-doped ACs as electrocatalysts, inexpensive and versatile materials that can replace costly Pt-based electrodes.

Article activity feed