Optimization of Sisal Content in Geopolymer Mortars with Recycled Brick and Concrete: Design and Processing Implications
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Geopolymer mortars were produced from recycled concrete powder (RCP) and recycled brick powder (RBP) at a 30/70 wt% ratio, activated with a hybrid alkaline solution (NaOH/Na₂SiO₃/KOH) and reinforced with sisal (Agave) fibers at 0–2 wt%. Mechanical performance (compression and flexural) and microstructure–phase evolution were as-sessed by XRD, FTIR, and SEM-EDS after low-temperature curing. Sisal addition de-livered a strength–toughness balance, with an intermediate dosage (~1–1.5 wt%) providing the best overall performance; higher dosages induced packing loss and fiber clustering. Microstructural evidence indicates the coexistence and co-crosslinking of N-A-S-H and C-(A)-S-H gels promoted by the RCP, which densifies the matrix and enhances fiber–matrix anchorage. Fractographic features support a crack-bridging/pull-out mechanism responsible for the improvement without penaliz-ing early-age strength. The study identifies a practical advantage of sisal reinforcement in RCP/RBP geopolymer mortars and links it to gel chemistry and interfacial phenom-ena, providing a reproducible pathway toward fiber-reinforced, low-embodied-carbon geopolymers derived from construction and demolition waste and suitable for durable construction applications.