Advancements, Challenges, and Future Perspectives of Soybean Integrated Pest Management

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Soybean is usually grown at large scales, with pest control based on insecticides. However, the overuse of chemicals has led to several adverse effects. Thus, integrated pest management (IPM) is the best way to protect yield through integrating different pest control tools, based on plant resistance (including Bt cultivars), adoption of economic thresholds (ETs), scouting procedures, use of selective insecticides, biological control, and other sustainable tools, which help maintain environmental quality in an ecological and economical manner. Soon, those tools will also include RNAi, CRISPR based control strategies, among other sustainable alternatives. In Brazil, results from the Soybean-IPM Program indicate that adopters of the technology have reduced insecticide use by approximately 50% relative to non-adopters, with yields comparable to or slightly higher than those of non-adopters. This reduction can be explained not only by the widespread adoption of Bt soybean varieties across the country but also by the adoption of ETs in Soybean-IPM, which has reduced insecticide use, thereby increasing natural biological control in the agroecosystem. However, low refuge compliance has led to the first cases of pest resistance to Cry1Ac, thereby growing reliance on chemical control and posing an additional challenge for integrated pest management practitioners. The obstacles to adopting IPM programs for commodity crops, such as soybean, may be mitigated by recent economic incentives within the new global agenda for decarbonized agriculture and the increase of bioinputs available in the Brazilian market. Such incentives can support the broader adoption of IPM, thereby reducing dependence on chemical inputs to achieve high yields.

Article activity feed