All-Fiber Optic Sensing for Multiparameter Monitoring and Do-Main-Wide Deformation Reconstruction of Aerospace Structures in Thermally Coupled Environments

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study introduces an all-fiber optic sensing network based on fiber Bragg grating (FBG) technology for structural health monitoring (SHM) of launch vehicle payload fairings un-der extreme thermo-mechanical conditions. A wavelength–space dual-multiplexing ar-chitecture enables full-field strain and temperature monitoring with minimal sensor de-ployment. Structural deformations are reconstructed from local measurements using the inverse finite element method (iFEM), achieving sub-millimeter accuracy. High-temperature experiments verified that FBG sensors maintain a strain accuracy of 0.8 με at 500 °C, significantly outperforming conventional sensors. Under 15 MPa mechanical loading and 420 °C thermal shock, the fairing structure exhibited no damage propagation. The sensing system captured real-time strain distributions and deformation profiles, con-firming its suitability for aerospace SHM. The combined use of iFEM and FBG enables high-fidelity, large-scale deformation reconstruction, offering a reliable solution for reusa-ble aerospace structures operating in harsh environments.

Article activity feed