Analytical Modeling of Frequency-Dependent Attenuation and RamanScattering for Next-Generation Ultra-Wideband Optical Networks

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The constant growth of IP data traffic, driven by sustained annual increases surpassing 26%, is pushing current optical transport infrastructures towards their capacity limits. Since the deployment of new fiber cables is economically demanding, ultra-wideband transmission is emerging as a promising costly-effective solution, enabled by multi-band amplifiers and transceivers spanning the entire low-loss window of standard single-mode fibers. In this scenario, an accurate modeling of the frequency-dependent fiber parameters is essential to reliably model optical signal propagation. In particular, the combined impact of attenuation slope and inter-channel stimulated Raman scattering (SRS) fundamentally shapes the power evolution of wide wavelength division multiplexing (WDM) combs and directly affects nonlinear interference (NLI) generation. In this work, a set of analytical approximations for the frequency-dependent attenuation and Raman gain coefficient is presented, providing an effective balance between computational efficiency and physical fidelity. Through extensive simulations covering C, C+L, and ultra-wideband U-to-E transmission scenarios, the accuracy in reproducing the behavior of the power evolution and NLI profiles of fully numerical SRS models with the proposed approximations is demonstrated.

Article activity feed