Quantum-Resilient Access Control Protocols for Cloud-Native Infrastructures in Post-Quantum Security Contexts

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Quantum computing poses a critical threat to existing cryptographic primitives, rendering current access control mechanisms in cloud-native infrastructures vulnerable to compromise. This paper introduces a comprehensive quantum-resilient access control framework specifically engineered for distributed, containerized, and zero-trust environments. The proposed system integrates post-quantum cryptographic (PQC) primitives—specifically lattice-based key encapsulation (Kyber) and digital signatures (Dilithium)—with a hybrid key exchange protocol to maintain crypto-agility and backward compatibility. We design a secure token issuance and verification process employing PQC-based authentication, ensuring resistance to both classical and quantum adversaries. A prototype implementation demonstrates that our hybrid PQC approach incurs a moderate computational overhead of approximately 10–30\% while preserving horizontal scalability and interoperability across Kubernetes clusters. Security analysis under the post-quantum adversary model confirms resistance to key compromise, replay, and forgery attacks. The results highlight that quantum-resilient access control protocols can be efficiently integrated into modern cloud infrastructures without sacrificing scalability, performance, or operational flexibility.

Article activity feed