Applying Action Research to Developing a GPT-Based Assistant for Construction Cost Code Verification in State-Funded Projects in Vietnam
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Cost code verification in state-funded construction projects remains a labor-intensive and error-prone task, particularly given the structural heterogeneity of project estimates and the prevalence of malformed codes, inconsistent units of measurement (UoMs), and locally modified price components. This study evaluates a deterministic GPT-based assistant designed to automate Vietnam’s regulatory verification. The assistant was developed and iteratively refined across four Action Research cycles. Also, the system enforces strict rule sequencing and dataset grounding via Python-governed computations. Rather than relying on probabilistic or semantic reasoning, the system performs strictly deterministic checks on code validity, UoM alignment, and unit price conformity in material (MTR), labor (LBR), and machinery (MCR), given the provincial unit price books (UPBs). Deterministic equality is evaluated either on raw numerical values or on values transformed through explicitly declared, rule-governed operations, preserving auditability without introducing tolerance-based or inferential reasoning. A dedicated exact-match mechanism, which is activated only when a code is invalid, enables the recovery of typographical errors only when a project item’s full price vector well matches a normative entry. Using twenty real construction estimates (16,100 rows) and twelve controlled error-injection cases, the study demonstrates that the assistant executes verification steps with high reliability across diverse spreadsheet structures, avoiding ambiguity and maintaining full auditability. Deterministic extraction and normalization routines facilitate robust handling of displaced headers, merged cells, and non-standard labeling, while structured reporting provides line-by-line traceability aligned with professional verification workflows. Practitioner feedback confirms that the system reduces manual tracing effort, improves evaluation consistency, and supports documentation compliance with human judgment. This research contributes a framework for large language model (LLM)-orchestrated verification, demonstrating how Action Research can align AI tools with domain expectations. Furthermore, it establishes a methodology for deploying LLMs in safety-critical and regulation-driven environments. Limitations—including narrow diagnostic scope, unlisted quotation exclusion, single-province UPB compliance, and sensitivity to extreme spreadsheet irregularities—define directions for future deterministic extensions. Overall, the findings illustrate how tightly constrained LLM configurations can augment, rather than replace, professional cost verification practices in public-sector construction.