Spatial Optimization of Urban-Scale Sponge Structures and Functional Areas Using an Integrated Framework Based on a Hydrodynamic Model and GIS Technique
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Rapid urbanization has exacerbated urban-stormwater challenges, highlighting the critical need for coordinated surface-water and groundwater management through rainfall recharge. However, current sponge city construction methods often overlook the crucial role of underground aquifers in regulating the water cycle and mostly rely on simplified engineering approaches. To address these limitations, this study proposes a spatial optimization framework for urban-scale sponge systems that integrates a hydrodynamic model (FVCOM), geographic information systems (GIS), and Monte Carlo simulations. This framework establishes a comprehensive evaluation system that synergistically integrates surface water inundation depth, geological lithology, and groundwater depth to quantitatively assess sponge city suitability. The FVCOM was employed to simulate surface water inundation processes under extreme rainfall scenarios, while GIS facilitated spatial analysis and data integration. The Monte Carlo simulation was utilized to optimize the spatial layout by objectively determining factor weights and evaluate result uncertainty. Using Shenzhen City in China as a case study, this research combined the “matrix-corridor-patch” theory from landscape ecology to optimize the spatial structure of the sponge system. Furthermore, differentiated planning and management strategies were proposed based on regional characteristics and uncertainty analysis. The research findings provide a replicable and verifiable methodology for developing sponge city systems in high-density urban areas. The core value of this methodology lies in its creation of a scientific decision-making tool for direct application in urban planning. This tool can significantly enhance a city’s climate resilience and facilitate the coordinated, optimal management of water resources amid environmental changes.