Micro Fault Diagnosis of Driving Motor Bearings Based on Multi-Residual Neural Networks and Evidence Reasoning Rule

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Micro-fault diagnosis of vehicle driving motor bearings can significantly bring safety and economic benefits in preventing major accidents and extending equipment lifespan. However, under variable operating conditions, effectively capturing and diagnosing fault-related weak current fluctuation or high-frequency noise features, presents substantial technical challenges. Regarding these issues, this paper proposes multi-residual neural networks (multi-ResNets) and an evidential reasoning rule (ER Rule)-based fault diagnosis model. The model employs a benchmark condition generalization mechanism, which selects multiple typical load conditions as diagnostic anchor points based on a multi-residual neural network structure. Furthermore, by integrating a sub-model credibility assessment mechanism to perform diagnostic condition assessment and category assessment based on ER rule. The experimental results indicate that compared to the traditional machine learning algorithms, the proposed multi-ResNets-ER Rule-based model achieves higher diagnostic accuracy and result reliability for micro-faults under variable operating conditions.

Article activity feed