Characterization and Optimization of the Ultrasound-Assisted Extraction Process of an Unexplored Amazonian Drupe (Chondrodendron tomentosum): A Novel Source of Anthocyanins and Phenolic Compounds

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study presents the first comprehensive physicochemical and bioactive characterization of the fruit of Chondrodendron tomentosum Ruiz & Pav. (Menispermaceae). Biometric and physicochemical parameters were characterized across three fruit ripening stages (green, turning, ripe). Additionally, proximate composition was determined in ripe fruits, and methanol concentration (25–75%), ultrasonic amplitude (30–70%), and time (1–15 min) were optimized using response surface methodology with a Box–Behnken design. During ripening, weight increased by +47.7% (3.89 to 5.74 g; p < 0.0001), TSS by +26.1% (7.00 to 8.83 °Brix), pH decreased by 32.0% (6.28 to 4.27), and acidity increased by 276% (0.25 to 0.94%). The quadratic models demonstrated high predictive accuracy (R2 > 96.5%; p < 0.004). Optimal conditions (57% methanol, 70% amplitude, and 15 min) maximized total anthocyanin content (120.71 ± 1.89 mg cyanidin-3-glucoside/L), total phenols (672.46 ± 5.84 mg GAE/100 g), and DPPH radical scavenging capacity (5857.55 ± 60.20 µmol Trolox/100 g) in ripe fruits. Unripe fruits do not contain anthocyanins, reaching 46.01 mg C3G/L in turning fruits and 120.71 mg/L in ripe fruits (162% higher than turning fruits). Principal component analysis (90.6% variance) revealed synchronized co-accumulation of anthocyanins and phenols, enhanced by vacuolar acidification. These results suggest ripe C. tomentosum fruits as a potential source for natural colorants, nutraceuticals, and functional foods, pending prior development of green, human-safe extraction processes.

Article activity feed