Manganese-Iron Supported Biomass-Derived Carbon Catalyst for Efficient Hydrazine Oxidation
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
In this study, a straightforward strategy for the preparation of functional carbon-based materials for hydrazine oxidation (HzOR) is presented. A highly efficient, cost-effective iron (Fe) and manganese-iron (MnFe) supported nitrogen-doped carbon (N-C) material was developed using a hydrothermal synthesis method. Meanwhile, N-C material was obtained from biomass – birch-wood chips – using hydrothermal carbonisation (HTC), followed by the activation and nitrogen doping of the resulting hydrochar. The material has a large specific surface area of 2431 m2 g−1 and a micro-mesoporous structure con-taining over 50% mesopore volume. The morphology, structure, and composition of the MnFe, MnFe/N-C, and Fe/N-C catalysts were determined using scanning electron micros-copy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX). The activity of the catalysts for the HzOR in an alkaline medium was evaluated using cyclic voltammetry (CV). The deposition of MnFe particles on N-C has been shown to result in a significant enhancement of electrocatalytic activity for HzOR in comparison with pure MnFe particles. The hydrazine oxidation current density values, measured at an electrode potential of 1.6 V vs. RHE, were found to be approximately 7 and 9 times higher on the Fe/N-C and MnFe/N-C catalysts, respectively, than on the MnFe catalyst.