Viscoelastic Properties of Organosilicon Fluid Interlayer at Low-Frequency Shear Deformations

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The present work explores the viscoelastic properties of a homologous series of orga-nosilicon fluids (polymethylsiloxane fluids) using the acoustic resonant method at a frequency of shear vibrations of approximately 100 kHz. The resonant method is based on investigating the influence of additional binding forces on the resonant characteris-tics of the oscillatory system. The fluid under study was placed between a piezoelectric quartz crystal that performs tangential oscillations and a solid cover-plate. Standing shear waves were established in the fluid. The thickness of the liquid layer was much smaller than the length of the shear wavelength, and low-amplitude deformations al-lowed for the determination of the complex shear modulus G* in the linear region, where the shear modulus has a constant value. The studies demonstrated the presence of a viscoelastic relaxation process at the experimental frequency, which is several or-ders of magnitude lower than the known high-frequency relaxation in liquids. In this work, the relaxation frequency of the viscoelastic process in the studied fluids, the ef-fective viscosity were calculated, the lengths of the shear wave and the attenuation co-efficients were determined.

Article activity feed