Mapping Morality in Marketing: An Exploratory Study of Moral and Emotional Language in Online Advertising
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Understanding how moral and emotional language operates in paid social advertising is essential for evaluating persuasion and its ethical contours. We provide a descriptive map of Moral Foundations Theory (MFT) language in Meta ad copy (Facebook/Instagram) drawn from seven global beverage brands across eight English-speaking markets. Using the moralstrength toolkit, we implement a two-channel pipeline that combines an unsupervised semantic estimator (SIMON) with supervised classifiers, enforce a strict cross-channel consensus rule, and add a non-overriding purity diagnostic to reduce attribute-based false positives. The corpus comprises 758 text units, of which only 25 ads (3.3%) exhibit strong consensus, indicating that much of the copy is either non-moral or linguistically ambiguous. Within this high-consensus subset, the distribution of moral cues varies systematically by brand and category, with loyalty, fairness, and purity emerging as the most prominent frames. A valence pass (VADER) shows that moralized copy tends toward a negative valence that may still yield a constructive overall tone when advertisers follow a crisis–resolution structure in which high-intensity moral cues set the stakes while surrounding copy positions the brand as the solution. We caution that text-only models undercapture multimodal signaling and that platform policies and algorithmic recombination shape which moral cues appear in copy. Overall, the study demonstrates both the promise and the limits of current text-based MFT estimators for advertising: they support transparent, reproducible mapping of moral rhetoric, but future progress requires multimodal, domain-sensitive pipelines, policy-aware sampling, and (where available) impression/spend weighting to contextualize descriptive labels.