Breathprints for Breast Cancer: A Non‐Invasive Approach to BI‐RADS 4 Risk Stratification

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background/Objectives: Breast cancer is the most common malignancy among women, and early detection is critical for improving outcomes. The Breast Imaging Reporting and Data System (BI-RADS) standardizes reporting, but the BI-RADS 4 category presents a major challenge, with malignancy risk ranging from 2% to 95%. Consequently, most women in this category undergo biopsies that ultimately prove unnecessary. This study evaluated whether exhaled breath analysis could distinguish malignant from benign findings in BI-RADS 4 patients. Methods: Participants referred to the McGill University Health Centre Breast Center with BI-RADS 3–5 findings provided multiple breath specimens. Breathprints were captured using an eNose powered breathalyzer , and diagnoses were confirmed by imaging and pathology. An autoencoder-based model fused the breath data with BI-RADS scores to predict malignancy. Model performance was assessed using repeated cross-validation with ensemble voting, prioritizing sensitivity to minimize false negatives. Results: The breath specimens of eighty-five participants, including sixty-eight patients with biopsy-confirmed benign lesions and seventeen patients with biopsy-confirmed breast cancer within the BI-RADS 4 cohort are analyzed. The model achieved a mean sensitivity of 88%, specificity of 75%, and a negative predictive value of 97%. Results were consistent across BI-RADS 4 subcategories, with particularly strong sensitivity in higher-risk groups. Conclusions: This proof-of-concept study shows that exhaled breath analysis can reliably differentiate malignant from benign findings in BI-RADS 4 patients. With its high negative predictive value, this approach may serve as a non-invasive rule-out tool to reduce unnecessary biopsies, lessen patient burden, and improve diagnostic decision-making. Larger, multi-center studies are warranted.

Article activity feed