African Grass Invasion Threatens Tropical Wetland Biodiversity: Experimental Evidence from <em>Echinochloa pyramidalis</em> Invasion in a Mexican Ramsar Site
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
African grasses deliberately introduced for cattle forage have become among the most destructive invaders of tropical wetlands globally, yet invasion mechanisms and management strategies remain poorly understood. We conducted field experiments examining competition dynamics between the invasive African grass Echinochloa pyramidalis and native wetland species in La Mancha, Mexico—a Ramsar site of international importance. Experiment 1 tested invasion potential within native Sagittaria lancifolia zones using four treatments: control, herbicide removal, E. pyramidalis transplant, and combined removal + transplant. Repeated measures ANOVA showed significant treatment and time effects on invasion success, with vegetation removal facilitating invasion (relative importance value increasing from 0 to 149.4 ± 26.6 after 18 months) while transplants alone failed to establish (RIV < 7.0). Sagittaria maintained 35-48% biomass across treatments, demonstrating coexistence capacity. Experiment 2 examined natural invasion of the vegetation ecotone over 49 months. Mixed-effects models revealed that E. pyramidalis increased dominance in its zone (β = 9.98, z = 4.77, p < 0.001) but showed minimal expansion into adjacent Sagittaria habitat, indicating propagule limitation rather than competitive exclusion as the invasion constraint. Sagittaria removal within E. pyramidalis zones significantly reduced invasion temporal increase (β = -6.44, z = -2.18, p = 0.030), suggesting biotic resistance. Results demonstrate that E. pyramidalis possesses invasion potential but requires disturbance to overcome establishment barriers. These findings support prevention-based management prioritizing disturbance limitation in intact wetlands and demonstrate that hydrological management maintaining permanent flooding (>30 cm depth) can effectively control established invasions by exploiting C4 photosynthetic limitations. Conservation implications for Mexican coastal wetlands—which lack legal protection equivalent to mangroves despite comparable ecosystem services—are discussed. These findings inform evidence-based management of African grass invasions in tropical wetlands worldwide.