Invariant Approach to the Interaction Between Several Fields and an Atom

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

We present a general procedure to describe the dynamics of N degenerate quantized fields interacting resonantly with a two–level atom, all coupled with the same strength, within the rotating–wave approximation. Starting from the analysis of the two and three field cases, we generalize the method by identifying dynamical invariants that lead to a factorized form of the time–evolution operator. A unitary transformation reduces the problem to an effective Jaynes–Cummings Hamiltonian, where only one field interacts with the atom and the remaining modes contribute as free fields. Assuming initially coherent fields and an atomic superposition, we compute the atomic inversion and the mean photon number, revealing vacuum Rabi oscillations with a frequency determined by an effective coupling constant that exceeds the individual atom–field coupling, as well as the characteristic collapse-revival behavior.

Article activity feed