Effect of Na<sup>⁺</sup> vs. K<sup>⁺</sup> Cations and Carbonate Presence on Urea Oxidation Reaction Coupled with Green Hydrogen Production in Alkaline Media: A voltammetric and Electrochemical Impedance Spectroscopy Study
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This work reports the electrochemical behavior of a nickel hydroxide electrode, electrodeposited in a deep eutectic solvent (DES), in alkaline solutions of varying composition, aiming to elucidate the influence of the cation (Na+ vs. K+), urea, and carbonate ions on the mechanism and kinetics of anodic processes. Cyclic voltammetry and electrochemical impedance spectroscopy were employed to analyze the electrochemical responses of electrode processes in alkaline water electrolysis systems. For the urea oxidation reaction (UOR), the frequency-dependent characteristics were thoroughly characterized, and the impedance response was simulated according to the Armstrong–Henderson equivalent circuit. It was found that the addition of urea significantly transforms the impedance structure, sharply reducing the polarization resistance and increasing the pseudo-capacitive component of the constant phase element at low frequencies, indicating activation of the slow steps of urea oxidation via a direct mechanism and the formation of an extended adsorptive surface. It was demonstrated that, unlike conventional alkaline electrolysis where KOH-based systems are generally more effective, urea-assisted systems exhibit superior performance in NaOH-based electrolytes, which provides more favorable kinetics for the electrocatalytic urea oxidation process. Furthermore, the accumulation of carbonate ions was shown to negatively affect UOR kinetics by increasing polarization resistance and partially blocking surface sites, highlighting the necessity of controlling electrolyte composition in practical systems. These findings open new opportunities for the rational design of efficient urea-assisted electrolyzers for green hydrogen generation.