Adsorption of Phosphonates to Iron- or Aluminum-Based Flocculants in Wastewater Treatment

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

In this study, we investigated the impact of varying iron (Fe) and aluminum (Al) contents on the adsorption of phosphonates to activated sludge. Phosphonates originating from household applications account for up to 40% of the non-reactive dissolved phosphorus in domestic sewage treatment plants and thus can contribute to the eutrophication of water bodies. Although these substances are not readily degradable, substantial quantities, ranging from 40% to more than 90%, are removed by sludge adsorption.The results demonstrate a strong correlation between the adsorption of aminophosphonates and the Fe3+ content of the sludge. The maximum phosphonate loadings were 5.94 mmol g-1 Fe3+ for ATMP, 4.94 mmol g-1 Fe3+ for EDTMP and 4.74 mmol g-1 Fe3+ for DTPMP, and 2.25 mmol g-1 Fe3+ for Glyphosate. In contrast to pure ferric hydride flocs, the adsorption of phosphonates was approximately threefold higher when the hydroxides were located within activated sludge flocs. It is concluded that native sludge flocs provide larger iron surfaces than ferric hydroxide alone. Based on the weight of the adsorbents, aluminum salts were four times less efficient than ferric salts. In sludge without ferric or aluminum hydroxides, phosphonate adsorption was negligible.

Article activity feed