A Pipeline for Mushroom Mass Estimation Based on Phenotypic Parameters: A Multiple Oudemansiella raphanipies Model

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Estimating the mass of Oudemansiella raphanipies quickly and accurately is indispensable in optimizing post-harvest packaging processes. Traditional methods typically involve manual grading followed by weighing with a balance, which is inefficient and labor-intensive. To address the challenges encountered in actual production scenarios, in this work, we developed a novel pipeline for estimating the mass of multiple Oudemansiella raphanipies. To achieve this goal, an enhanced deep learning (DL) algorithm for instance segmentation and a machine learning (ML) model for mass prediction were introduced. On one hand, to segment multiple samples in the same image, a novel instance segmentation network named FinePoint-ORSeg was applied to obtain the finer edges of samples, by integrating an edge attention module to improve the fineness of the edges. On the other hand, for individual samples, a novel cap–stem segmentation approach was applied and 18 phenotypic parameters were obtained. Furthermore, principal component analysis (PCA) was utilized to reduce the redundancy among features. Combining the two aspects mentioned above, the mass was computed by an exponential GPR model with seven principal components. In terms of segmentation performance, our model outperforms the original Mask R-CNN; the AP, AP50, AP75, and APs are improved by 2%, 0.7%, 1.9%, and 0.3%, respectively. Additionally, our model outperforms other networks such as YOLACT, SOLOV2, and Mask R-CNN with Swin. As for mass estimation, the results show that the average coefficient of variation (CV) of a single sample mass in different attitudes is 6.81%. Moreover, the average mean absolute percentage error (MAPE) for multiple samples is 8.53%. Overall, the experimental results indicate that the proposed method is time-saving, non-destructive, and accurate. This can provide a reference for research on post-harvest packaging technology for Oudemansiella raphanipies.

Article activity feed