Interpretation of Mode-Coupled Localized Plasmon Resonance and Sensing Properties

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Plasmonic nanostructures support localized surface plasmon resonances (LSPRs) which exhibit intense light–matter interactions, producing unique optical features such as high near-field enhancements and sharp spectral signatures. Among these, plasmon hybridization (PH) and Fano resonance (FR) are two key phenomena that enable tunable spectral responses, yet their classification is often ambiguous when based only on geometry or extinction spectra. In this study, we systematically investigate four representative nanostructures: a simple nanogap dimer (i-type structure), a dolmen structure, a heptamer nanodisk cluster, and a nanoshell particle. We utilize discrete dipole approximation (DDA) to analyze these structures. By separating scattering and absorption spectra and introducing quantitative spectral metrics together with near-field electric-field vector mapping, we provide a unified procedure to interpret resonance origins beyond intensity-only near-field plots. The results show that PH-like behavior can emerge in a dolmen structure commonly regarded as a Fano resonator, while FR-like characteristics can appear in the i-type structure under specific conditions, underscoring the importance of scattering/absorption decomposition and vector-field symmetry. We further evaluate refractive-index sensitivities and discuss implications for plasmonic sensing design.

Article activity feed