Spatio-Temporal Variation in Water Quality in Urban Lakes and Land Use Driving Impact: A Case Study of Wuhan

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Urban lakes, as critical components of urban ecosystems, provide essential ecological services but face water quality deterioration due to rapid urbanization and associated land use changes. This study investigated the temporal and spatial characteristics and evolution mechanisms of water quality in Wuhan city lakes, with a focus on the Great East Lake basin (GELB), a typical urban lake cluster in the middle Yangtze River basin. By integrating monthly water quality monitoring data (2017–2023) with high-resolution land use data (2020), we employed the Water Quality Index (WQI), Spearman correlation analysis, and Redundancy Analysis (RDA) to assess water quality and the impact of land use on major pollutants. The results revealed significant spatial heterogeneity: Sha Lake (SL) exhibited the best water quality, while Yangchun Lake (YCL) and North Lake (NL) showed the worst conditions. Seasonal variations in water quality were observed, influenced by the ecological functions of lakes and surrounding land use. Notably, understanding these seasonal dynamics provides insights into nutrient cycle operations and their effective management under varying climatic conditions. In addition, the correlation between chlorophyll-a concentration and nutrient elements in urban lakes was not consistent, with some lakes showing significant negative correlations. The water quality of urban lakes is influenced by both land use and human management. Land use analysis indicated high impervious surfaces in East Lake (EL), SL, and YCL exacerbated runoff-driven nutrient loads, the nitrogen elevation from agricultural runoff of Yan East Lake (YEL) and NL’s pollution from historical industrial discharge. This study highlights the urgent need for targeted water management strategies to mitigate the impact of urbanization on water quality and provide a scientific basis for effective governance and ecological restoration in rapidly urbanizing areas around the world. By adopting an integrated approach combining water quality assessments with land use data, this research offers valuable insights for sustainable urban lake management.

Article activity feed