Novel Paclobutrazol Derivatives as Potential Antifungal and CGRP Receptor Modulators: Synthesis and a Computational Assessment

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background/Objectives: Escalating resistance to existing antifungal compounds necessitates development of novel bioactive molecules with innovative mechanisms. Paclobutrazol, a triazole-containing plant growth regulator with modest antifungal activity, presents a structurally versatile scaffold amenable to derivatization. This study investigated whether strategic structural modifications could enhance antifungal potency and reveal broader therapeutic applications through integrated computational approaches. Methods: Twenty-six novel paclobutrazol derivatives were synthesized via etherification or esterification and characterized through NMR spectroscopy (¹H, ¹³C, ¹⁹F), IR spectroscopy, and mass spectrometry. Computational assessment employed CropCSM for toxicity prediction, pdCSM-GPCR for G protein-coupled receptor affinity estimation, MolPredictX for pathogenic target activity probability, CB-Dock2 for molecular docking, and pkCSM for ADME properties and drug-likeness evaluation. Results: Compound 26, featuring naphthyl substitution, demonstrated strong binding to sterol 14-alpha demethylase (-10.8 kcal/mol), calcitonin gene-related peptide type 1 receptor (-11.1 kcal/mol), extracellular calcium-sensing receptor (-10.9 kcal/mol), and metabotropic glutamate receptor 4 (-10.4 kcal/mol), with CGRP1R affinity comparable to approved antagonist rimegepant (-11.3 kcal/mol). Compounds 18 and 19, containing nitro groups, were the only substances predicted to exhibit AMES toxicity. Multiple derivatives showed activity against fungal, bacterial, parasitic, and viral targets. Compounds 20-22 displayed favorable drug-like properties with balanced physicochemical parameters. Conclusions: This work establishes paclobutrazol as a viable scaffold for therapeutic development beyond traditional antifungal applications. The analysis suggests potential utility in migraine and pain management through CGRP receptor modulation, calcium homeostasis disorders via calcium-sensing receptor targeting, neuroendocrine conditions through somatostatin receptor type 5, and inflammatory diseases via prostaglandin D2 receptor 2. These findings provide a framework for repurposing agricultural compounds in drug discovery, though further experimental validation is required.

Article activity feed