Entropy-Driven Orbital Formation: A Thermodynamic Foundation for the Hydrogen Atom

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Traditional quantum mechanics models hydrogen orbitals as solutions to the Schrödinger equation but offers no physical explanation for why these shapes emerge. In this paper, we present a novel thermodynamic model—S-Theory—that derives hydrogen orbital structures from recursive entropy amplification processes. By treating the electron field as an evolving entropy distribution subject to environmental perturbations, we simulate s and p orbitals (1s, 2s, 3s, 4s, 2pz, 2px) using the recursive formulation: sn+1=sn2+sc. The results accurately reproduce quantum orbital shapes and predict their spatial evolution as outcomes of entropy feedback. This work introduces a unified framework that bridges thermodynamics, quantum structure, and information theory—viewing orbitals as entropy-generated geometries that encode structural information through the recursive compression of entropy fields. The recursive entropy collapse at higher energy levels also provides a natural foundation for the emergence of molecular seeds—laying the groundwork for a Unified Entropic Collapse Principle (UECP) that connects physics to the origin of life.

Article activity feed