The Collatz Conjecture and the Spectral Calculus for Arithmetic Dynamics

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

We develop a complete operator-theoretic and spectral framework for the Collatz map by analyzing its backward transfer operator on weighted Banach spaces of arithmetic functions. The associated Dirichlet transforms form a holomorphic family that isolates a zeta-type pole at s=1, while on a finer multiscale space adapted to the dyadic-triadic geometry of the Collatz preimage tree we establish a two-norm Lasota-Yorke inequality with an explicit contraction constant, yielding quasi-compactness, a spectral gap, and a Perron-Frobenius theorem in which the eigenvalue 1 is algebraically and geometrically simple, no other spectrum meets the unit circle, and the unique invariant density is strictly positive. The fixed-point relation is converted into an exact multiscale recursion for the block averages c_j, revealing a rigid second-order coupling with exponentially small error terms and asymptotic profile c_j~ 6-j. This spectral classification forces every weak* limit of the Cesàro averages derived from any hypothetical infinite forward orbit to be either 0 or a scalar multiple of the Perron-Frobenius functional, with convergence to 0 occurring precisely under the Block-Escape Property. Since the forward map satisfies an unconditional exponential upper bound, whereas Block-Escape combined with linear block growth along a subsequence would impose an incompatible exponential lower bound, all analytic and spectral components needed for such a contradiction are complete, reducing the Collatz conjecture to excluding infinite orbits exhibiting Block-Escape without the supercritical linear block growth prohibited by the spectral theory.

Article activity feed