Deep Reinforcement Learning for Optimum Order Execution: Mitigating Risk and Maximizing Returns
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Optimal Order Execution is a well-established problem in finance that pertains to the flawless execution of a trade (buy or sell) for a given volume within a specified time frame. This problem revolves around optimizing returns while minimizing risk, yet recent research predominantly focuses on addressing one aspect of this challenge. In this paper, we introduce an innovative approach to Optimal Order Execution within the US market, leveraging Deep Reinforcement Learning (DRL) to effectively address this optimization problem holistically. Our study assesses the performance of our model in comparison to two widely employed execution strategies: Volume Weighted Average Price (VWAP) and Time Weighted Average Price (TWAP). Our experimental findings clearly demonstrate that our DRL-based approach outperforms both VWAP and TWAP in terms of return on investment and risk management. The model's ability to adapt dynamically to market conditions, even during periods of market stress, underscores its promise as a robust solution.