The Quantum Blueprint Formalism: An Informational Extension of Dissipative Quantum Field Theory in Living Systems

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

We propose a generalization of the dissipative quantum field theory (DQFT) as developed by Celeghini, Rasetti, and Vitiello to describe the dynamic informational feedback underlying biological coherence. The new framework, termed the Quantum Blueprint Formalism (QBF), builds on the fact that in DQFT the conjugate field ψ̃ is an active dynamical partner of ψ, representing the time-reversed degrees of freedom that co-generate dissipation, irreversibility, and the selection of inequivalent vacuum states. Rather than functioning as a mere repository of past interactions, ψ̃ participates continuously in the system’s coherent evolution through SU(1,1) Bogoliubov mixing.QBF extends this structure by allowing the ψ–ψ̃ coupling to become explicitly state-dependent, thereby endowing the conjugate field with an informational role that reflects and influences the system’s ongoing coherence pattern. Correlation parameters Θ = {θₖ} quantify the instantaneous coherence relations between the two sectors and evolve in time according to a nonlinear stochastic differential equation derived from the dissipative field dynamics.This extended formalism provides quantitative links between informational coherence and physiological observables such as heart rate variability (HRV), EEG phase synchronization, water-domain ordering, and ultraweak photon emission. It thereby establishes a bridge between dissipative quantum physics, information theory, and experimental biophysics, offering a consistent mathematical and empirical basis for understanding life as an informationally guided, self-organizing process in which ψ and ψ̃ jointly sustain and regenerate coherence.

Article activity feed