An Intelligent Decision-Support Framework for AST Risk Prediction Using Explainable Ensemble Learning
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This paper proposes an intelligent and explainable ensemble system for predicting as-partate aminotransferase (AST) levels based on routine biochemical and demographic data from the NHANES dataset. The framework integrates robust preprocessing, adaptive feature encoding, and multi-level ensemble learning within a nested cross-validation (5×3) structure to ensure reproducibility and prevent data leakage. Several regression mod-els—including Random Forest, XGBoost, CatBoost, and stacking ensembles—were sys-tematically compared using R², RMSE, MAE, and MAPE metrics. The results show that the Stacking v2 architecture, combining CatBoost, LightGBM, and Ridge meta-regression, achieves the highest predictive accuracy and stability. Explainable AI analysis using SHAP revealed key biochemical and lifestyle factors influencing AST variability. The pro-posed system provides a modular, interpretable, and reproducible foundation for deci-sion-support applications in intelligent healthcare analytics, aligning with the goals of applied system innovation.