Analysis of λ-Hölder Stability of Economic Equilibria and Dynamical Systems with Nonsmooth Structures

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The paper develops a mathematical approach to the analysis of the stability of economic equilibria in nonsmooth models. The λ-Hölder apparatus of subdifferentials is used, which extends the class of systems under study beyond traditional smooth optimization and linear approximations. Stability conditions are obtained for solutions to intertemporal choice problems and capital accumulation models in the presence of nonsmooth dependencies, threshold effects, and discontinuities in elasticities. For λ-Hölder production and utility functions, estimates of the sensitivity of equilibria to parameters are obtained, and indicators of the convergence rate of trajectories to the stationary state are derived for λ > 1. The methodology is tested on a multisectoral model of economic growth with technological shocks and stochastic disturbances in capital dynamics. Numerical experiments confirm the theoretical results: a power-law dependence of equilibrium sensitivity on the magnitude of parametric disturbances is revealed, as well as consistency between the analytical λ-Hölder convergence rate and the results of numerical integration. Stochastic disturbances of small variance do not violate stability. The results obtained provide a rigorous mathematical foundation for the analysis of complex economic systems with nonsmooth structures, which are increasingly used in macroeconomics, decision theory, and regulation models.

Article activity feed