Lithium-Ion Battery Open-Circuit Voltage Analysis for Extreme Temperature Applications
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Accurate estimation of the open-circuit voltage (OCV) as a function of state of charge (SOC) is critical for reliable battery-management system (BMS) design in lithium-ion battery applications. However, at low temperatures, polarization effects distort the measured OCV–SOC profile due to premature voltage cutoffs during low-rate testing. This paper presents an offsetting-based correction method that reconstructs the truncated portions of the OCV curve by extrapolating the charge/discharge data beyond the cutoff points using simple voltage offsets. The approach is applied entirely in post-processing, requiring no modification to standard test protocols. Experimental validation using Samsung EB575152 Li-ion cells across a wide temperature range (−25 °C to 50 °C) demonstrates that the method restores the full OCV span, reduces apparent capacity loss, and improves consistency across cells and temperatures. The proposed technique offers a practical and effective enhancement to standard OCV testing procedures for temperature-aware SOC modeling.