Realistic Large-Eddy Simulation Study of the Atmospheric Boundary Layer During the Mosquito Wildland Fire and Its Control of Smoke Plume Transport

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Large-eddy simulation (LES) within a weather research and forecasting (WRF) model coupled with an active scalar transport equation was used to simulate Atmospheric Boundary Layer conditions during the Mosquito fire, the largest wildland fire in California during September 2022. The simulations were conducted with realistic boundary conditions derived from the National Oceanic and Atmospheric Administration (NOAA) High Resolution Rapid Refresh (HRRR) model, with the aim of better understanding the two-way coupling between the ABL and plume dynamics. The terrain was extremely inhomogeneous, and the topography varied significantly within the numerical domain. Initially, LES of the smoke-free ABL was conducted on nested domains, and detailed ABL data were gathered from 8 to 9 September 2022. LES simulations were validated using four Automated Surface Observing System (ASOS) stations and NOAA meteorological (MET) observations, as well as NOAA met Twin Otter measurements, and the desired accuracy was established. The smoke plume was then released into the ABL at noon on 9 September 2022, and the plume simulations were conducted for a period of one hour following the release. During this period, the ABL transitioned from convective to buoyancy-shear-driven regimes. Late-night and early-morning conditions are influenced by the complex topography and low-level jet, whereas buoyancy and shear control the ABL dynamics during the morning and afternoon hours. The plume vertical transport is influenced by the ABL depth and the size of the vertical turbulence structures during that time, whereas the wind conditions and turbulent kinetic energy within the ABL dictate the horizontal transport scales of the plume. In addition, the results demonstrate that the plume modifies the microclimate along its path.

Article activity feed