Valorization of Canteen Wastewater Through Optimized Spirulina Platensis Cultivation for Enhanced Carotenoid Production and Nutrient Removal

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The valorization of nutrient-rich institutional effluents represents a promising route for sustainable algal biotechnology. This study investigates the potential of canteen wastewater (CW) as an alternative culture medium for Spirulina platensis, integrating wastewater treatment with high-value carotenoid and lipid production. Growth performance, biochemical composition, and nutrient removal efficiencies were systematically evaluated in 2 L photobioreactors under optimized conditions. Spirulina cultured in 75% CW under 180 μmol photons m−2 s−1 achieved a biomass productivity of 0.071 g L−1 day−1, nearly three-fold higher than the synthetic BG-11 control (0.023 g L−1 day−1). Nutrient remediation was highly efficient, with 92.12% nitrate and 90.05% phosphate removal, effectively reducing effluent concentrations below discharge limits. Biochemical profiling revealed that wastewater-grown biomass contained 54.3% protein and 7.85% lipids, with a remarkable carotenoid yield of 21.81 mg g−1 DW—significantly higher than the control (6.85 mg g−1 DW). Mechanistic analysis suggests that the balanced nutrient stoichiometry (C:N:P ≈ 30:4:1) and mixotrophic conditions enhanced biomass quality while mitigating ammonia toxicity. This study demonstrates the first integrated application of canteen wastewater for dual-purpose bioremediation and pigment-rich biomass production, establishing a scalable circular bioeconomy framework for institutional waste management.

Article activity feed