Flood Hazard Assessment Under Subsidence-Influenced Terrain Using Deformation-Adjusted DEM in an Oil and Gas Field

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Flood hazards in arid oil-producing regions result from both natural hydrological processes and terrain changes due to land subsidence. In the Yibal field in northern Oman, long-term hydrocarbon extraction has caused measurable ground deformation, altering surface gradients and drainage patterns. This study presents a deformation-adjusted flood hazard assessment by integrating a 2013 photogrammetric DEM with a 2023 subsidence-corrected DEM derived from multi-temporal PS-InSAR observations (RADARSAT-2 and TerraSAR-X). Key hydrological indicators—including slope, drainage networks, Height Above Nearest Drainage (HAND), floodplain depth, Curve Number, and extreme precipitation from the wettest monthly rainfall in a 10-year archive—were recalculated for both years. Flood hazard maps for 2013 and 2023 were generated using an AHP-based multi-criteria framework across five hydrologically motivated scenarios. Results indicate that while the total area of high- and very-high-hazard zones changed only slightly in most scenarios (within ±6%), these zones shifted into subsidence-affected depressions, reflecting deformation-driven redistribution of flood-prone areas. Low-hazard zones grew most significantly, especially in Scenarios S2–S4, with increases of 160–320% compared to 2013, while moderate-hazard areas showed smaller but consistent growth. Floodplain-dominated conditions (S5) produced the most pronounced nonlinear response, with a substantial increase in very low hazard and localized concentration of very high hazard in areas of deepest subsidence. Geomorphic analysis using the Geomorphic Flood Index (GFI) shows deepening of flow pathways and expansion of geomorphic depressions between 2013 and 2023, supporting the modeled redistribution of hazards. These findings demonstrate that even moderate subsidence can significantly alter hydrological susceptibility and underscore the importance of incorporating deformation-adjusted terrain modeling into flood hazard assessments in petroleum fields and other subsidence-prone areas.

Article activity feed