Design and Comparison of Hardware Architectures for FIPS 140-Certified Cryptographic Applications
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Modern cryptographic systems increasingly depend on certified hardware modules to guarantee trustworthy key management, tamper resistance, and secure execution across Internet of Things (IoT), embedded, and cloud infrastructures. Although numerous FIPS 140-certified platforms exist, prior studies typically evaluate these solutions in isolation, offering limited insight into their cross-domain suitability and practical deployment trade-offs. This work addresses this gap by proposing a unified, multi-criteria evaluation framework aligned with the FIPS 140 standard family (including both FIPS 140-2 and FIPS 140-3), replacing the earlier formulation that assumed an exclusive FIPS 140-3 evaluation model. The framework systematically compares secure elements (SEs), Trusted Platform Modules (TPMs), embedded Systems-on-Chip (SoCs) with dedicated security coprocessors, enterprise-grade Hardware Security Modules (HSMs), and cloud-based trusted execution environments. It integrates certification analysis, performance normalization, physical-security assessment, integration complexity, and total cost of ownership. Validation is performed using verified CMVP certification records and harmonized performance benchmarks derived from publicly available FIPS datasets. The results reveal pronounced architectural trade-offs: lightweight SEs offer cost-efficient protection for large-scale IoT deployments, while enterprise HSMs and cloud enclaves provide high throughput and Level 3 assurance at the expense of increased operational and integration complexity. Quantitative comparison further shows that secure elements reduce active power consumption by approximately 80–85% compared to TPM 2.0 modules (<20 mW vs. 100–150 mW) but typically require 2–3× higher firmware-integration effort due to middleware dependencies. Likewise, SE050-based architectures deliver roughly 5× higher cryptographic throughput than TPMs (∼500 ops/s vs. ∼100 ops/s), whereas enterprise HSMs outperform all embedded platforms by two orders of magnitude (>10 000 ops/s). Because the evaluated platforms span both FIPS 140-2 and FIPS 140-3 certifications, the comparative analysis interprets their security guarantees in terms of requirements shared across the FIPS 140 standard family, rather than attributing all properties to FIPS 140-3 alone. No single architecture emerges as universally optimal; rather, platform suitability depends on the desired balance between assurance level, scalability, performance, and deployment constraints. The findings offer actionable guidance for engineers and system architects selecting FIPS-validated hardware for secure and compliant digital infrastructures.