Towards LLM Enhanced Decision: A Survey on Reinforcement Learning based Ship Collision Avoidance

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This comprehensive review examines the works of reinforcement learning (RL) in ship collision avoidance (SCA) from 2014 to the present, analyzing the methods designed for both single-agent and multi-agent collaborative paradigms. While prior research has demonstrated RL's advantages in environmental adaptability, autonomous decision-making, and online optimization over traditional control methods, this study systematically addresses the algorithmic improvements, implementation challenges, and functional roles of RL techniques in SCA, such as Deep Q-Network (DQN), Proximal Policy Optimization (PPO), and Multi-Agent Reinforcement Learning (MARL). It also highlights how these technologies address critical challenges in SCA, including dynamic obstacle avoidance, compliance with Convention on the International Regulations for Preventing Collisions at Sea (COLREGs), and coordination in dense traffic scenarios, while underscoring persistent limitations such as idealized assumptions, scalability issues, and robustness in uncertain environments. Contributions include a structured analysis of recent technological evolution, and a Large Language Model (LLM) based hierarchical architecture integrating perception, communication, decision-making, and execution layers for future SCA systems, which prioritizes the development of scalable, adaptive frameworks that ensure robust and compliant autonomous navigation in complex, real-world maritime environments.

Article activity feed