Filtration Solutions for Microplastic Mitigation: Cutting-Edge Filtration Technologies and Membrane Innovations for Environmental Protection

Read the full article

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Microplastics represent a pressing global environmental concern due to their persistence, widespread occurrence, and adverse impacts on aquatic ecosystems and human health. Effective removal of these contaminants from water is essential to safeguard biodiversity and ensure water quality. This work focuses on the pivotal role of membrane-based filtration technologies, including microfiltration, ultrafiltration, nanofiltration, reverse osmosis, membrane bioreactors, and dynamic membranes, in capturing and eliminating microplastics. The performance of these systems depends on key membrane characteristics such as pore size, material composition, hydrophilicity, mechanical strength, and module design, which govern retention efficiency, fouling resistance, and operational stability. Membrane filtration offers a highly effective, scalable, and sustainable approach to microplastic removal, outperforming conventional treatment methods by selectively targeting a wide range of particle sizes and morphologies. By highlighting the critical contribution of membranes and filtration processes, this study underscores their potential in mitigating microplastic pollution and advancing sustainable water treatment practices.

Article activity feed