Research on Mobile Robot Path Planning Using Improved Whale Optimization Algorithm Integrated with Bird Navigation Mechanism

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

In order to solve the problems of slow convergence speed, insufficient accuracy, and easily falling into the local optimum of the traditional whale optimization algorithm (WOA) in mobile robot path planning, an improved whale optimization algorithm (IWOA) combined with the bird navigation mechanism was proposed. Specific improvement measures include using logical chaos mapping to initialize the population to enhance the randomness and diversity of the initial solution, designing a nonlinear convergence factor to prevent the algorithm from prematurely entering the shrinking surround phase and extending the global search time, introducing an adaptive spiral shape constant to dynamically adjust the search range to balance exploration and development capabilities, optimizing the individual update strategy in combination with the bird navigation mechanism, and optimizing the algorithm through companion position information, thereby improving the stability and convergence speed of the algorithm. Path planning simulations were performed on 30 × 30 and 50 × 50 grid maps. The results show that compared with WOA, MSWOA, and GA, in the 30 × 30 map, the path length of IWOA is shortened by 3.23%, 7.16%, and 6.49%, respectively; in the 50 × 50 map, the path length is shortened by 4.88%, 4.53%, and 28.37%, respectively. This study shows that IWOA has significant advantages in the accuracy and efficiency of path planning, which verifies its feasibility and superiority.

Article activity feed